AN INTRODUCTION TO DIFFEOMORPHISM GROUPS
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ABSTRACT. In this paper, we introduce a reader with knowledge of
only basic group theory and relatively little of differential geometry
to the subject of diffeomorphism groups via the proof of Kathryn
Mann’s that Diff.(M) is perfect.

1. INTRODUCTION

Studying the symmetries of an object is well-known to be an important
way to study the object itself, and the objects of differential geometry are
no exception to this. We aim to provide an invitation to the study of the
structure of groups of diffeomorphisms of manifolds, and we do this by pro-
viding an exposition of Kathryn Mann’s proof of the perfectness of Diff .(M)
[14]. While the aforementioned proof is elementary to those already famil-
iar with the study of diffeomorphism groups, it takes for granted a variety
of topics from Lie theory, differential geometry, and more. We make the
proof accessible to a far wider audience, introducing precisely the necessary
information for a student with only basic group theory and the differential
geometry of the first three chapters of [13]. We choose this result in partic-
ular because it is a landmark by Thurston in the area [19], and this proof
in particular because it naturally brings up a variety of important concepts
and results in the area, such as the topology of diffeomorphism groups, iso-
topies, Lie groups, exponentials of vector fields, the Thurston tricks, and
the perfectness and simplicity of certain important diffeomorphism groups.
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In Section 1, we introduce diffeomorphism, topological, and Lie groups,
as well as our main theorem that Diff (M) is perfect. In Section 3, we
introduce partitions of unity and prove their existence, prove the Fragmen-
tation Lemma, and reduce to the case M = R". In Section 4, we make a
detour to diffeomorphisms of the circle, covering PSL(2,R) and invoking
Herman’s theorem. In Section 5, we induct on n to prove the theorem for
n > 2. In Section 6, we conclude with an overview of the history of the
problem and some possibilities for further reading.

2. DIFFEOMORPHISM (GROUPS

We will throughout this paper concern ourselves only with smooth man-
ifolds, which we consider to be Hausdorff and second-countable. Also, our
convention will be that a diffeomorphism is smooth with a smooth inverse.
We now describe rigorously our central object of study, the diffeomorphism
group of a manifold.

Definition 2.1. Let M be a smooth manifold. We write Diff (M) to mean
the group {f: M — M : f is a diffeomorphism}, implicitly with the oper-
ation o : Diff(M)? — Diff (M) which is composition of diffeomorphisms as
functions.

It is not difficult to verify that this is a group. Associativity of compo-
sition is simply a property of functions in general, f~! is a diffeomorphism
if f is by definition because f is smooth and bijective with smooth inverse,
and the function id : M — M defined by x — « is a diffeomorphism and
an identity with respect to function composition. Diff (M) is an interesting
group in its own right, but in fact it has great significance if one wishes to
study the manifold M itself, given the following theorem of Filipkiewicz [7]:

Theorem 2.2 (Filipkiewicz). Let My, Ms be connected smooth manifolds.
If there exists an isomorphism ¢ : Diff (My) — Diff (Ms), then there exists
a diffeomorphism w : My — My such that o(f) = wfw™t for all f €
Diff (My).

In other words, we have a version of Felix Klein’s Erlangen program for
smooth manifolds, in that the algebraic structure of the symmetries of the
manifold entirely determines the geometric structure of the manifold itself.
Understanding the structure, then, of Diff (M) seems an important task.
As it turns out, Diff (M) has a manifold-esque structure itself, but we will
not yet make this precise.

In general, an informative topology associated to a group (or other al-
gebraic structure) can be very helpful in studying that group. A standard
motivating example for this is the group of reals R under addition, where
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the topology is the standard one on R. For instance, if we take any group-
theoretic reasoning or property for which generating sets are relevant, it
is useful to note that any open neighborhood of the identity generates the
entire group (because of the Archimedean property). The reason that the
topology on R is useful in studying the algebraic group is that the topology
and group operation are compatible in that addition and taking inverses are
continuous operations. More generally, we may define a topological group to
be a group G and a topology 7 on G such that for every z € G, the maps
y— y~ 'y — zy, and y — yx are continuous with respect to 7. Given
this, we may in fact generalize our earlier Archimedean property statement
in the following way:

Lemma 2.3. Let U C G be an open subset of a connected topological group
G such that e € U. Then U generates G.

Proof. We show that (V), the subgroup generated by V =UNU~! C U,
is nonempty, open, and closed. From those three properties, connectedness
of G forces (V) to be the entirety of G. By hypothesis, e is in U and thus
in V, so V is nonempty. Note that y — gy is bijective and bicontinuous for
any g € G, so it is a homeomorphism. Thus, gV is open for any g € (V),
so (V) is open because it consists of words in V. We move on to closedness
to finish the proof. If g & (V), then gV is open, contains g, and is disjoint
from (V), so G\ (V) is open. O

Because multiplication by an element acts as a homeomorphism on the
group, any neighborhood U of the identity can be taken to a homeomorphic
neighborhood around any element x via multiplication by x. Therefore,
topological groups must be locally uniform in this sense. Given this local
uniformity, a natural class of topological groups to ask about is those which
are topological manifolds. Consider the set Mat(n,R), the set of n x n
matrices over R under addition, and take the subset GL(n,R) (for “General
Linear”) of invertible elements of Mat(n, R) under matrix multiplication.
This subset will be a group (because matrix multiplication is associative,
I is the identity, and inverses exist by construction). We can treat this
as an abstract group, i.e., a set with a binary function, and abstractly it
is an important group; however, if we consider each A € GL(n,R) as an
element of Euclidean space R™"*" = R”Q, the topology inherited from R™
makes GL(n,R) a topological group homeomorphic to a manifold (the fact
that the operations are continuous is not difficult, but it is nontrivial that
it the group is a manifold). Given that we now have manifolds in play, it is
natural to ask whether or not we may talk about groups which are smooth
manifolds.

A Lie group is a group G together with a compatible smooth mani-
fold structure (U;, ¢;):es such that the aforementioned maps are smooth.
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Motivating examples of topological, but especially Lie, groups often come
from groups of matrices such as GL(n,R), though again it is nontrivial that
GL(n,R) may be given a smooth structure at all. As we will come back
to later, the subgroup SL(n,R) = {A € GL(n,R) : det(4) = 1}, and its
quotient PSL(n,R) = SL(n,R)/Z(SL(n,R)) are both Lie groups by taking
the inherited (from GL(n,R)) and quotient smooth structure respectively.
Here, Z(SL(n,R)) denotes the center, and is equal to either {I} or {I,—I}
for odd and even n respectively.

Unfortunately, Diff(M) is far too large for a manifold structure. The
natural topology on it is the compact-open topology, which has as a basis
sets of the form N(U;, Uy, K ¢, f) with U; and U; sets in the atlas of
M with charts (U;, ;) and (Uy, i), K a compact subset of M, ¢ > 0,
and f € Diff (M), where g € N(U;,Uyr, K, ¢, f) if and only if g(K) C V
and || D*[pigp; H(z) — D¥[pi fo; Y(2)]] < € for all 2 € K and k € N.
The topology this basis induces turns out to be an infinite-dimensional
manifold of sorts: locally, it is homeomorphic to a Fréchet space, though the
details of precisely what Fréchet spaces or infinite-dimensional manifolds are
largely unimportant to us. It will suffice to consider the neighborhood of a
diffeomorphism to be an infinite-dimensional, separable, complete normed
vector space. Still, this topology on Diff (M) is larger than what we would
like. In fact, another failing of this topology is that the behavior at infinity,
so to speak, cannot be accounted for, because individual neighborhoods
only take into account compact sets.

However, if we define the support of g € Diff (M), denoted supp(g), to
be the closure of the set {x € M : g(z) # z}, the set {g € Diff (M) :
supp(g) is compact} is a normal subgroup. This is not only significantly
smaller, but also has a nicer metric (see Equation 2.1) which we will con-
sider further later, and avoids the behavior at infinity issue. Recalling that
the (path) component of z € X for a topological space X is the maximum
(path-)connected subset of X containing = with respect to inclusion, we
may consider the (path) component of id € Diff(M). The path component
and component are, in the case of many groups (including Lie groups and
Diff (M)) the same set, and we will denote the component of the identity in
Diff (M) by Diff(M). The subgroup Diffo(M) is normal, and its structure
is very closely related to Diff (M), so to prove structural theorems about
Diff (M) one often considers Diffo(M). In particular, one reason to consider
Diffo(M) and its subgroups is Lemma 2.3. Diff((M), while nicer in several
ways than the full Diff (M), still suffers from many issues topologically as
well as the issue of behavior at infinity, so we will actually mostly consider
the subgroup Diff .(M) = {g € Diffo(M) : supp(g) is compact}. Of course,
when M is compact, Diff .(M) = Diffo(M). In general, the relationship be-
tween Diff (M) and Diffy(M) is paralleled by that of Diffo (M) and Diff .(M)
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in that proving theorems about the latter often gives us theorems about
the former. Two results of Thurston [19] exemplify this,! where we recall
that a group is called perfect if it equals its own commutator subgroup:

Lemma 2.4 (First Thurston Lemma). If Diff .(M) is perfect as a group,
then Diffo(M) is simple.

Lemma 2.5 (Second Thurston Lemma). For U C M with the closure of
U compact, let Gy denote the normal subgroup of Diff.(M) of elements g
with supp(g) contained in U.2 Then Gy C Diff (M) is perfect if and only
if Diffo (M) is perfect.

Actually, simplicity is quite a strong algebraic condition on a group, so by
Theorem 2.2, perfectness of Diff .(M) gives us useful information about M.
In fact, the simplicity of Diffo(M) was a conjecture of Smale [18] resolved
by Thurston using these lemmas. However, it was was an essential input
to Thurston’s proof of simplicity that Diff.(M) was perfect, and a more
accessible one by far than the proofs of Thurston’s lemmas. This motivates
what will become our central theorem:

Theorem 2.6. For every smooth manifold M of dimension at least 2,
Diff .(M) is perfect.

There are a number of important things to note here. First, the theorem
does hold true for M of dimension 1, though having dimension at least 2
is necessary for the proof we give here. Second, we do prove the theorem
for M = S*, the circle. Finally, proving the theorem for S! is, in a rigor-
ous sense, as close as we can get to proving the theorem for dimension 1
without fully proving it. This is because of the well-known fact that ev-
ery 1-dimensional smooth manifold is diffeomorphic to a disjoint union of
copies of S' and R, as well as the additional fact that diffeomorphisms in
the same connected component of Diff (M) as id must preserve connected
components of M. From these, we can conclude that Diff.(M) with M 1-
dimensional is isomorphic to the direct product (Diff.(S'))" x (Diff.(R))™
for some n,m € N.

Earlier, we referred to path-connectedness in Diff(M). Given that we
only currently have a topology on Diff (M), defining smoothness requires a
different perspective on a path from the usual continuous function [0, 1] to
Diff (M). We give this alternative perspective.

1Toge‘cher with a lemma we will prove in the next section, Lemma 3.2, and several
lemmas not relevant to our exposition, these comprise what Banyaga calls the “Thurston
tricks” [2].

2We note that for every Gy, as well as every Gx where Gg = {g € Diff (M) :
supp(g) C K} for compact K, Lemma 2.3 applies.
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Definition 2.7. An isotopy is a smooth function ¢ : M x [0,1] — M such
that for every t € [0,1], ¢¢(z) :  — ¢(z,t) is a diffecomorphism of M.

This intuitively aligns with what a smooth path in Diff (M) should be.
We claim something stronger, though: that isotopies characterize what
smooth functions on Diff (M) are entirely. Traditionally, we would define
smoothness via the infinite-dimensional manifold structure that we men-
tioned in passing earlier, but for convenience, we give a characterization
which is well-known to be equivalent.

Definition 2.8. A function F' : Diff(M) — Diff (M) is smooth if and only
if, for every isotopy (é:¢)icjo,1), F(¢¢) is an isotopy.

Our last piece of preliminary information is the metric on Diff .(M) that
we mentioned earlier. This is, in full generality, a metric on C°(M, M),
the C°° functions from M to M with compact support. It is defined as
follows:

5(f,g)=sup sup |DF[pirge;'(z) — Doy fo; ] ()] (2.1)
:?CGEII\V{ :EGUi,Ui/

Balls are of course defined accordingly. The following, which we will
invoke later, is more or less a consequence of the Inverse Function Theorem.

Lemma 2.9. Diff.(M) is open in C°(M, M).
3. REDUCTION TO SINGLE MANIFOLDS

Our overall goal for this paper will be to prove Theorem 2.6. Unless
stated otherwise, everything in the sequel is an adaptation of [14] with
numerous interludes for differential-geometric background (whose proofs
are largely adapted from [2, 13]). The bulk of our efforts in this paper will
be devoted to the case M = R"™ for n > 2. In this section, we aim to prove
that this case is enough.

Proposition 3.1. For any n-dimensional smooth manifold M with n > 2,
the group Diff .(M) is perfect if Diff .(R™) is.

In turn the bulk of this reduction will consist of proving the Fragmen-
tation Lemma, which is an important tool when discussing the structure
of diffeomorphism groups. Our exposition of the proof is one which follows
the structure of that of [2], but we have adapted it to be accessible to a
reader with far less background.

Lemma 3.2 (Fragmentation Lemma). Let M be a smooth manifold, (W;)cr,
an open cover of M for some index set L, and g any element of Diff.(M).
Then g can be written as a product g1 0gao---0g, of elements of Diffo(M)
such that for every 1 < j <n, supp(g;) € W; for somel € L.
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However, before we can move onto the proof of Lemma 3.2, we must
introduce a tool. We say that a collection of open subsets (U;);er of a
smooth manifold M is locally finite if for every € M, theset {i € [ : x €
U} is finite.

Definition 3.3. Let (U;);c; be a locally finite open cover of a smooth
manifold M for some index set I. We define a partition of unity subordinate
to (Uy)ier to be a collection of functions (1););er such that:

(1) ; is a smooth function M to R for every i € I,
(2) 0 <¢y(x) <1lforeveryielandxe M,

(3) supp(v;) C U; for every i € I, and

(4) > icri(z) =1 for every x € M.

This notion is useful very broadly for differential geometry. The idea
behind it is that we may take locally defined notions (such as an integral
over a part of a manifold) and build them up from local pieces to make them
global (which continuing the integral example would be defining integrals
for functions whose domains are the entire manifold). For us, we will use
them to gradually build up a diffeomorphism whose support is contained
in some entire compact set from diffeomorphisms that only affect smaller
parts of that compact set. The following theorem, which we will prove later,
tells us that for any atlas we can define a partition of unity. One should
keep in mind that, by the local compactness of manifolds, any atlas may
be reduced to a locally finite one.

Theorem 3.4 (Existence of Partitions of Unity). Let (U;);cr be a locally
finite open cover of a manifold M with index set I. Then there exists a
partition of unity subordinate to (U;)icy-

With this preparation out of the way, we move on to the proof of the
Fragmentation Lemma:

Proof of Lemma 3.2. Recall our smooth manifold M, our diffeomorphism g
in Diff.(M), and our open cover (W;),er, with index set L. We will instead
consider for most of this proof the collection (U;);cr, indexed by some I, of
open sets which are contained in some W; and whose closures are compact.
If we can prove the theorem for (U;);cys, it follows for (W));cr, because
having support contained in some U; implies having support contained in
some W;.

First, note that supp(g) is compact, so there is a finite I’ C I such that
supp(g) € U,cp Ui. Letting U = (J,; Ui, consider some isotopy g; from
go = id to g1 = ¢ contained in Gy C Diff .(M). For any r, we can write g
as

9= (90 "91/r) © (970.92/7) 0 -0 (9,1, 91)-



D.R. AOKI

Notice that for such an 7, we only need to provide the fragmentation for each
Irk = 9(_;61,1)”%/7- factor. We claim that for any open neighborhood V of id
in Diff.(M), there exists an 7y such that g, isin V for every 1 < k <r, or
in other words, that we may make the factors we are considering as close to
id as we like. To prove this, recall that the isotopy g is a path v in G, so we
may consider (by a slight abuse of notation) its image v = {g; : t € [0,1]}.
Define the family of sets V,, = {f € Diff.(M) : fg; ', g:f ' € UNU"'}.
Then V,, is open in Diff . (M) for every ¢, so Vg, N7y is by definition open in ~.
The path « is a homeomorphism onto its image, so y~* (Vg,) is open in [0, 1],
and there must be some g € y~1(V,,) such that ¢ € Q. Therefore, g, € V,,,
and because the relation defining V,, is symmetric, we have g; € V,_. Thus,
(Vg,)qcq is an open cover of 7. By compactness, there must be some finite
T C Q such that (V,,)qer also covers 7. There must be some r7 such that
every element of T is expressible with denominator r7, so we take ry, = rr,
yielding the claim.

With this in hand, we may proceed to prove the lemma for each g, j term,
using the fact that g, is arbitrarily close to the identity. Informally, doing
this will consist of building up g, successively on each of the elements of
the finite cover (U;);c;r. We use partitions of unity to make this gradation
idea rigorous. By Theorem 3.4, if U is considered as a smooth manifold
itself, then there is a partition of unity (1););cr subordinate to the open
cover (U;);ep of U. Denoting J = {1,2,...,|I'|}, we re-index (U;);ecr as
(Uj)jes, allowing us to define

Hm = Z wj-

jeJ

j<m
Take some isotopy (g )¢ in Diff (M) from (g, x)o = id to (grk)1 = Gr k,
which we may construct such that for every ¢, (g,): is arbitrarily close
to id in the same sense that g, is. Then we may define, for m € J,
Jmrk(2) = (Grk)p, (2)(z). The idea here is roughly what we described
when we introduced partitions of unity: to get from fp,—1 .k to fom r i, We
partially apply g,r on U, and so in each iteration we build a function
closer to g, . In symbols,

Jmar k(@) = [(9rk) g (@) © frn—1,rk] ().

As we mentioned earlier, for any neighborhood V of id in Diff.(M), we
can pick an 7 € N and an isotopy (g, ): such that each function in the
isotopy (grk): is in V, so each fp, .1 is as well, because fy, ., is closer
in C°(M, M) to id than (grk)max, u(z)- Thus, because the set C' = {f €
C®*(M,M) : f has a smooth inverse} is open in C°(M, M) by Lemma 2.9,
we may choose r and our isotopies such that each f, ,; is contained in
C. Taking this openness of C for granted for now, f, , is in Diff .(M),
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has support contained in supp(g) and thus compact support, and v, =
(Grk )t (2) (%) is an isotopy from fp, . to id, so fi . is in Diff.(M).
Therefore, we may write

grk(x) = firr)ee(T)
= [(gr,k)wuq(x) ©---0 (gr,k)wl(z)](x)
(et s) 00 Ut 00 (i id)](2)

Because (gr,k)wm(z)(m) =z when z & Up,, SuPp(fm,r,kfnzlfl’r’k) C Uy, and
Sk fn:£1,r,k is an element of Diff.(M), so this gives us a fragmentation
of g . The fragmentation of g follows from the fragmentation of each g, x,
as noted previously, so we are done. O

For the existence of partitions of unity, we use a similar idea to the proof
in [13], though that proof appears somewhat far past the background we
are assuming from the reader.

Proof of Theorem 3.4. Recall our manifold M and our locally finite open
cover (U;)ier-
A smooth function h : R™ — R is a bump function if there exist positive

reals @ > b > 0 such that

(1) if ||z|| > a, then h(z) =0,

(2) if a > ||z|| > b, then 0 < h(x) < 1, and

(3) if ||z|| < b, then h(z) = 1.
We will demonstrate such an h for every n, a, b later, but for now take
it to exist. We have our smooth n-dimensional manifold M with atlas
(Vi,¢j)jes indexed by some set J and our locally finite open cover (U;);er.
Construct the open cover

{WCM:WCUNV,forsomeiecl,jelJ
and (W) = B,.(z) for some rr € R,z € R"},
and take a locally finite subcover (W});c, indexed by L. For each | € L we
can find j € J, 2; € R, and a bump function h; such that ¢;(W) + z is the

support of h;. We then define v; as h o (p; + 2;) on V; and 0 elsewhere.
From this we may define

di) = Y w),
zeW,;
Wi CU;

and our claimed partition of unity is
i)

vile) = = Ty
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Each of our functions is well-defined, because the open covers are locally
finite and thus the sums are finite for each z. Smoothness of 1;, supp(¢;) C
Us, and ), ; ¢i(z) = 1 are obvious. It is also clear that each v; is nonneg-
ative, so we also have 0 < 9;(z) < 1.

All that is left is our bump functions. We can define the auxiliary func-
tion

0 z <0,

W) = {exp(—l/w) x>0
and from this we can define a bump function for arbitrary n, a, b:
h(a — |lz]])
ga,b(x) = :
h(a = [lz[l) + h(llz]| — b)

It is not difficult to verify that this satisfies the conditions of a bump func-
tion, so we are done. O

Given the Fragmentation Lemma, our main result of the section follows
fairly naturally:

Proof of Proposition 3.1. At a high level, we construct an isomorphism be-
tween Gy and Diff .,(R™) for every open U diffeomorphic to a ball, and
then use the Lemma 3.2 to reduce perfection of Diff.(M) to perfection of
each Gy. In more detail, suppose that Diff .(R™) is perfect, that (U;, i)icr
is a chart of M, and that (Vj);cs is an indexing of the set {V : V C
U; and ¢;(V) = B,(x) for some i,7,2}. Then we take a locally finite sub-
cover (V;);jes of M indexed by J' C J. For each V; there is a diffeo-
morphism v; : ¢(V;) — R™. V; is a smooth manifold in its own right,
and f ~ f|y, is an isomorphism from Gy, to Diff.(V}). In turn, the map
I (piovj)f(piov;)~! is an isomorphism from Diff.(V;) to Diff.(R™).
Thus, because Diff.(R") is perfect, G, is for each V}, so f € Gy, is a prod-
uct of commutators [f1, fo] ... [fn-1, fn]. By Lemma 3.2, any g € Diff .(M)
is a product g =gy 0---0g, with g; € Gij for every k and some ji. Thus,
we conclude that

g=49g1°---030n
= ([91,1791,2] ce [91,m171,91,m1]) 0---0 ([gn,17gn,2] cee [gn,m,ﬁhgn,ml]%
and Diff (M) is perfect. O

4. DIFFEOMORPHISMS OF THE CIRCLE

The main result of this section will be, aside from some technical details,
that Diff.(S1) is perfect. It may not be immediately obvious to the reader
why S' is relevant at all, but in fact it will be essential to our argument

10
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for the perfectness of Diff .,(R™). To even properly state our result, though,
will require some background.

4.1. Vector Fields, PSL(2,R), and the Theorem Statement. We be-
gin by giving an introduction to exponentials of vector fields. Recall that
the tangent bundle "M of a manifold M is the disjoint union | |, ., 7o M =
{(z,v) : x € M,v € T, M} together with the linear structure of T, M on
each fiber {z} x T,,M.

Definition 4.1. Let M be a smooth manifold. A smooth vector field on
M is a smooth function X : M — TM such that X () is in {a} x T, M,
and the support of X is the closure of the set {x € M : f(x) # 0}. The
set of smooth vector fields on M is denoted X(M), and the set of smooth
vector fields on M whose support is compact is denoted X.(M).

We will, for the most part, identify an element (z,v) € {a} xT, M simply
with v.

Now, this definition of support more closely aligns with what the reader
is likely familiar with from previous experiences, such as real or complex
analysis, and it is not immediately apparent that this is particularly related
to our notion of the support of a diffeomorphism. However, as we will
show, the support of a vector field and the support of a diffeomorphism are
closely related. This relationship is due to the fact that a smooth vector
field induces a smooth diffeomorphism in the following manner.

We say that a function ¢ : M x R — M is a flow if ¢(z,0) = = and
d(d(x,8),t) = ¢(x,s +t) for x € M and s,t € R. If we have a function
¢ : M xR — M which is smooth and a flow, then intuitively it is a way to
move around M for some time ¢ such that moving according to ¢ for time s
and then time ¢ is the same as simply moving according to ¢ for time s +t¢.
For any smooth vector field X € X.(M), we can define a flow ¢x(x,t) via
the (autonomous) differential equation

Sox(n.t) = X(6x(@,0)

with initial condition ¢x(x,0) = x. While the theorem of existence and
uniqueness tells us that a solution exists locally, it is nontrivial that a
solution to this differential equation exists globally. We give the broad
intuition for why this is true, as a proper proof is a little long and the
existence is intuitively obvious. We can deduce from the aforementioned
existence and uniqueness theorem that for every x € M there must exist
a unique solution on some open U, C M x R containing (z,0), so there
must exist an open U C M containing = and an ¢, > 0 such that there
exists a unique solution on U., x (—¢,,&,). By compactness of the support
of X, there must exist a finite set I C M such that | J,.; U, contains the

11
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support of M. Therefore, if we denote £py = min({e, : € I}), there is a
unique solution for every x with ¢ € (—epr,ep). Finally, we may extend
this uniform time solution to a global solution by, for each € M, taking
the curve

dx(z,t) te(—em,em)
Va(t) = § ox(dx(v,em),t —enm) € (0,00)
¢X(¢X(337 —EM),t + EM) t e (—O0,0).
This last step in particular requires some lengthy justification, but these
details are not so important to us, and for the curious reader, Theorem 9.16
of [13] makes much more precise and detailed all of the above.
We may denote the time ¢ map of the flow ¢x(z,t), for fixed ¢, by
qﬁgﬁ), so the time one map of the flow is ¢>g§). We call the function exp :

X (M) — Diff (M) X — ng(;) the exponential map. In fact it takes a little
bit of thought not just to prove well-definedness of exp, but also to prove
that the image of exp is Diff .(M). Our first consideration is support. We
claimed earlier that the support of the vector field is related to the support
of the corresponding diffeomorphism, and in fact the support of X is equal
to the support of exp(X), because when 0 = X (z) = X(¢x(y, 1)) for some

x,y, then %(;SX (z,t) =0 and ¢§) is constant at x. For the isotopy to

the identity, simply Cénlsider vt = exp(tX).

(Some readers with more background might notice the similarities to
the exponential for a Riemannian manifold or, much more importantly to
the study of diffeomorphism groups, the analogue of the exponential for
finite-dimensional Lie groups. In more detail about that remark, X.(M) is
the Lie algebra of Diff .(M), and in spite of the fact that the exponential
for Diff (M) is neither injective nor surjective onto any neighborhood of
the identity, the nice properties of the elements of the image of the expo-
nential make these elements and the exponential important to the study of
Diff .(M) generally and to our proof in particular.)

We may now, at least, state our main theorem for the section in full.

Theorem 4.2. There is a neighborhood U of the identity in Diffo(S!) =
Diff.(SY) such that any g € U can be written as a product of four com-
mutators g = [G1(g9), f1] ... [G4(g), f4], with f; independent of g and each
G, : Diffo(S') — Diffo(S') smooth. Further, we may take G;(id) = id and
fi = exp(F;) with each F; in X.(S').

Before beginning the proof of Theorem 4.2, we introduce the notable
subgroup PSL(2,R) € Diffo(S!), which is isomorphic as a group to the
quotient group SL(2,R)/{I,—1}. However, in this inclusion, the action of
PSL(2,R) on S! is not the action of matrices on R?, but instead the action
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of Mébius transformations. Here, Mobius transformations are functions
z ZIS’ where z is an element of RP' = R U {co}. The action is defined
by the aforementioned fractional linear transformation when cz + d # 0
and z # oo; when cz+d =0, 2z =00 and ¢ # 0, or z = oo and ¢ = 0,
we have z — 00, 2 — £, and z — oo respectively. Consider the inclusion

Cy : ST — C, the Cayley transform Cy : RP' — C defined by z — E—I_;
when z # 0o and z — 1 when z = oo, and the identification of A with its
Moébius transformation M(A). The action of [A] € PSL(2,R) on z € S* is

defined by

[Al(x) = [Cy ! 0 C1 o M(A) 0 O o Cyl(x)

Notice that this is well defined because A and —A produce the same action
this way. One reason we wish to focus on these is that this is, as mentioned
earlier, a group action of PSL(2, R), which is to say that if [A] is the equiv-
alence class of A in the quotient SL(2,R)/{I,—I}, then [AB] = [A] o [B]
and [A~!] = [A]7!. This will allow us to make explicit a number of con-
structions and computations. Another reason for this is that

cosf sinf
[4o] = K— sin 6 cosﬁﬂ

acts on S! via rotation by —26:

(cos —isin§)Cy  (x) + (—sinf — icosh)
(cos @ + isin)Cy *(x) + (—sinf +icos0)
_exp(—if)C~ () — iexp(—if)

~ exp(i0)Cy (z) + i exp(if)

(€1 0 M(4) 0 O V() = j

1 iy
= exp(—QiH)%)zl
Cr (z)+1

= exp(—2i0)x.

(Strictly speaking, these manipulations only hold when Cy*!(x) # oo, but
because C; o M(Ag) o C;* and thus [Ag] are smooth, we must still have
[C1 0 M(Ag) o C;1)(1) = exp(—2i6).)

It is easy to show that PSL(2,R) is contained in Diff(S*). Note that
PSL(2,R) is connected because [A] +— det(A) is continuous with con-
nected image, and that PSL(2,R) is locally path-connected because it is
locally Euclidean. Every connected and locally path-connected space is
path-connected, so every element of PSL(2,R) has an isotopy to [I] =
id € Diff(S!) inside of PSL(2,R), and we have the inclusion PSL(2,R) C
Diff.(S1).

An indispensable tool in our proof of Theorem 4.2 will be a result of Her-
man, Corollary 5.2 of [11]. Unfortunately, the proof of Herman’s theorem

13
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is too deep for this paper, so we do not cover it here, though it is proved
in English as Theorem 2.3.3 of [2].

Theorem 4.3 (Herman). Denote by Ry the rotation of S' by 0. There is
a neighborhood U of the identity in Diffo(S') and a dense set A C [0,27)
such that for any p € A, any g € U can be written as Ry4)[Go(g), Ry],
with X : Diff (M) — [0,27) and Gy : Diff .(M) — Diff .(M).

4.2. Proving Diff.(S') is Perfect. Armed with this, we proceed to prove
our main theorem of the section.

Proof of Theorem 4.2. Consider the neighborhood U of Theorem 4.3. We
will show that there is a neighborhood inside ¢/ that satisfies the conditions
of Theorem 4.2. By Theorem 4.3, there exist \, #, and G such that every
element g of U can be expressed as Ry(y,,)[Go(g, 1), Ry] for any p € A.
From here on, we will largely omit g when writing functions of g.

We will let G4 = Gy. Now, we will explicitly construct F; such that
RM = eXp(F4) and Gl, GQ, G3,F1, FQ, F3 such that

Ry = [G1,exp(F1)][G2, exp(F2)][G3, exp(F3)].

We begin with F,. Notice that, because S! is 1-dimensional, T, 9! is 1-
dimensional subspace of R? for every x (in particular, if = (cos 6, sin §),
then T,,S! is the span of (sin 6, — cos 6)). Therefore, for every  the function
y — |ly|| is an isometry and an isomorphism. Because of this, we can
effectively consider a smooth vector field X on S! to be a function from S!
to R. To make this slightly more rigorous, for every X € X.(S'), we have
a Yx € C°(S1, R) defined by = — || X (z)||, and this Yy corresponds to X
in various ways we will expound on later. Of course, this correspondence
goes the other way, and we may define for Y € C*°(S1,R) the smooth
vector field Xy € X.(S!) by z — Y (x) - (sinf, —cos@). This is in fact a
correspondence; i.e., Yx,) =Y and X(y,) = X.

Define R(z,0) = Ry(x). One of the ways in which Xy and Y correspond
to each other is the following;:

o (z) = R (m7/0t Yx( ?(w))ds) .

14
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In other words, traveling along the flow of X is the same as rotating ac-
cording to Yx. Therefore, if we take Y4 ¢ = 0, then

exp(Xy, ,)(@) = 9(X,, ()

-R (x /01 9ds)
— Ry(x).

Thus, if we let Fy(g9) = X(v, ), then exp(Fy) = R,,.
We now move on to the product of three commutators. We take

Y1((cosf,sinf)) =1 — cosf
and

Y2((cosf,sinf)) = —1 — cos 6.

Setting F1 = F3 = Xy, and F» = Xy,, we have

exp(Fy) = exp(F3) = [((1) 1)]

e[ 9]

a 0
0 a'|

Note that det(G,) = det(exp(F;)) = 1 for ¢ = 1,2, 3, so we may easily
compute the commutators

and

Also, for a nonzero angle «, define G, =

[Ga, exp(F1)] =

(G, exp(F3)] = (g 01)

15
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We may compute, again fairly easily, our other commutator:

o= [0 2) G DG )6
[ )
N _<521—1 m :

We then compute the product of commutators

(G, exp(F1)][G g, exp(F2)][Gas exp(F3)]

b ) D6 )]

(14_(@2_1)@12—1) 2(a? —1)jj 2872 - ))]
(

1+ (a? )(52*1)

Letting B(A) = (sin(—X(g)/2) + 1)~ 2, if we may choose a(g) such that

—(BN)T2 = 1) =2(a(V)? = 1) + (a(X)* = 1)* (BN - 1),
then we have —\(g)/2 = sin™" (6(X)~* — 1) and

[Ga(n), exp(F1)][Gny s exp(F2)|[G oy exp(F3)]
A(
A

[ ]
= Ry

Thus, we only need show that «(A) can be chosen in this manner. In
(0,1/2), there exists such a 3 for each a:
1

By the Inverse Function Theorem, o (% =+ 1)_2 = B(a) is a

local diffeomorphism on some open U containing o = 1, so we take the
inverse ag(f). The function B(\) is a local diffeomorphism on an open
V containing A = 0, and 8(0) = 1, so because ag(1l) = 1, then a()) =
ap(B(N)) is a local diffeomorphism on V N 71 (U) containing A = 0. By
smoothness of A, \=1(VNB~1(U)) is open, so UNA~H(V NB7L(U)) satisfies
the theorem statement. |
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5. THE PROOF FOR R"

In this last section, we apply the perfectness of S' to induct on n and
prove that Diff.(R") is perfect for n > 2.

Before that, though, we introduce a lemma that is more apparently ap-
plicable to our stated goal. The lemma breaks an element of Diff.(R")
into pieces closer to elements of Diff.(R"~!) and Diff.(R). If g and h
are in Diff .,(R™), we say that g preserves horizontal hyperplanes and h
preserves vertical lines if g(R"~! x {z}) = R"~! x {z} for every x, and
h({v} x R) = {v} x R for every v € R"~1. The lemma is below.

Lemma 5.1. There is a neighborhood U of the identity in Diff .(R™) such
that any f € U can be written as G(f) o H(f), where H(f) preserves each
vertical line, G(f) preserves each horizontal hyperplane, and both G, H :
U — Diff .(R™) are smooth.

Proof. Let m; : R™ — R denote projection to the ith coordinate; i.e.,
(z1,...,2n) — x;. Suppose [ : R™ — R™ has compact support. We claim
that there exists U C Diff .(R") such that if f € U, then for any v € R"~1,
fv : R = R defined by f,(z) = 7, f(v,x) is a diffeomorphism. Note that if
Tn f(v,21) = 7n f (v, 22), then by the Mean Value Theorem, f,(z3) =0 at
some x3 € [x1, 2], and

r=xI3
=|1-0
=1.
Note that f +— sup,cgn-16(id, f,) is continuous, so the preimage of (—1,1)
under it is open. Let this preimage be U.
Given some f € Diff (R") in U, define G;(v,z) = m;(v, f, }(x)), and
define H,G : R® — R" by

H(v,z) = (v, fu(x))
and
Gv,z) = (G1(v,z),...,Gpo1(v,2),2).

Clearly H and G are smooth in terms of f, and G; 0o H = m; o f, so
GoH-=Ff. O

We now come to our direct application of Theorem 4.2.

Lemma 5.2. Let U,V C R" be open such that the closure of U is compact
and contained in V. Then there exist vector fields Xi,... X4 € X (R")
whose supports are contained in V' such that the following condition holds:
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e There is an open U C Diff .(R™) containing id such that for every
g € U with supp(g) C U, if g preserves vertical lines, then g can be
decomposed as

g =[G1,exp(Y1)] ... [G4, exp(Yy)],
with each G; : Diff .(R™) — Diff .(R™) smooth.

Proof. Let B"~! be a ball in R"1. Then S! foliates U inside of V, in
that we may construct a smooth embedding ¢ : B»~! x §1 — R” with
U C ¢({b} x S*) C V such that ¢(S! x {b}) is a subset of a vertical line
for every b € B" 1. One way to do this is to use the compactness of the
closure of U, and the resulting boundedness of U, to take some cylinder
B"~1 x I containing U for some open interval I, and from there embedding
the rest of the circle. See [14] for a nice visualization of this.

If ¢ € Gy preserves vertical lines, then we may instead consider it as a
diffeomorphism R"™ to R™ of the form (v,y) — §(v,y) for v € R*~1 and
some §. Letting g, (y) denote §(v,y) and g, denote (v,y) — (v, g,(y)), each
g» has support on the vertical line {v} x R and thus on {b,} x S! for some
b,. Letting o, : S* — B"~! x S! be s — (by,s), we can conjugate §, by
¢ ooy, yielding a diffeomorphism of S'. By Theorem 4.2, we may write this
as

(pooy) ' ogyo(poay) =[Gyr,exp(F1)]...[Gya,exp(Fy)],

with Fj independent of g, and G ; a smooth function of g,. We conju-
gate the F}’s this time by the differential map D,(¢ o o,)~! : TSt —
T(go0,)-1(x) (@({bu} x S1)), giving us vector fields F, ; = Dy(¢po0,) ' F; on
(poa,)(S1). We also conjugate the G, ;’s by (¢poa,) "1, yielding diffeomor-
phisms G, = (¢po0p) L oGy io(doay) of (pooy)({by} x S). Because of
the smooth dependence of G, ; on §,, G, i+ is also a smooth function of g,,
so the G, i/’s piece together to form smooth functions G;» on ¢(B"~1 x S1).
Since g(x) = id(x) when z ¢ ¢(B"~! x S1), we can trivially extend each
Gy to a diffeomorphism on the entirety of R™. We can piece together the
vector fields because of their smooth dependencies on v, and then we can
extend these pieced together vector fields to smooth vector fields F; on all
of R™ supported on V 2 ¢(B"~! x S'). Thus, we have the decomposition
g = [G1/,exp(F1/)] ... [Gy,exp(Fy )], with all of the supports contained in
V and each G; a smooth function of g. O

With Lemma 5.1 and Lemma 5.2 in hand, we may proceed to the proof
of our main theorem.

Proof of Theorem 2.6. We prove that Diff.(R") is perfect for n > 2 via
induction on n, and then invoke Proposition 3.1 to yield the full theorem.
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We begin with the base case n = 2. We show that for an arbitrary
compact K C R? which is the closure of an open set, every element of Gx
is a product of a fixed number of commutators, which yields the theorem
because definitionally every element of Diff.(R?) is in some G . Take said
arbitrary K, and take some open set U containing K such that the closure
of U is compact. In turn, take some open set V containing the closure of
U such that the closure of K is compact. Applying Lemma 5.2 yields a
neighborhood U of id such that every g € U with supp(g) C U preserving
horizontal lines, g can be decomposed as [G1,exp(Y1)]...[G4,exp(Ys)]. In
fact, we may symmetrically apply Lemma 5.2 to find a neighborhood V
satisfying the same hypotheses, except we assume that g preserves horizon-
tal lines, and we have a decomposition [Gs,exp(Ys)]...[Gs,exp(Ys)]. We
invoke Lemma 5.1, yielding a decomposition g = G(g) o H(g) for any ¢ in
some open W. By smoothness of G and H, T =WNG~ (V)N H-Y(U) is
open. For any g € T, G(g) and H(g) are in V and U respectively, so

g = [G5,exp(Ys)] ... [Gs, exp(Ys)][G1,exp(Y1)] . .. [G4, exp(Yy)].

Thus, every element of 7 is a product of commutators. By Lemma 2.3, T
generates Gy, so every element of Gy and thus G C Gy is a product of
commutators. Note that the number of commutators involved is fixed.

We now perform the inductive step, which is very similar to the base
case. Assume that for n < k, there exists a natural r(n) such that any
g € Diff .(R™) can be decomposed into a product of commutators g =
[G1,exp(F1)] ... [Gr(n), exp(Fy(n))], with each G; smooth and each F; inde-
pendent of g. Let K be compact and the closure of an open set, and let
U,V C R**! be open such that K is contained in U and the closure of U
is contained in V. Take the neighborhood U given to us by Lemma 5.2 and
the neighborhood V given by Lemma 5.1. Taking the decomposition G o H
from Lemma 5.1, and letting f be an element of VN H~1(U), the action of
G(f) on each horizontal hyperplane R¥ x {z} can be decomposed by the
inductive hypothesis as G, (f) = [Gu,1,exp(Fp1)] . .. [Gar(n) €XP(Fyrn))]-
The proof of Lemma 5.2 lets us piece together the G, ;’s and Fj ;’s into
diffeomorphisms and vector fields on all of R¥*! so we have G(f) =
[G1,exp(F1)] ... [Gr(n),exp(Fr(n))]. Therefore, Lemma 5.2 tells us that we
may decompose H(f) as

H(f) = [Gr(n)+17 eXp<Fr(n+1))] v [Gr(n)+47 eXp(Fr(n+4))]-
We have

f :[Gl’ exp(Fl)] s [Gv"(n)7 eXp(Fr(n))]
o [Gr(n)+17 exp(Fr(n+1))] s [Gr(n)+47 exp(Fr(n+4))]~
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Thus, every element of V N H~1(U) is a product of commutators, so by
Lemma 2.3, every element of Gk is a product of commutators. Because K
was arbitrary, we conclude the proof. O

We recall, as an immediately accessible and centrally important appli-
cation of Theorem 2.6, that if Diff .(M) is perfect, then Diffy(M) is simple
(this is Lemma 2.4).

Corollary 5.3. For every smooth manifold M, Diffo(M) is simple.

6. CONCLUSION

We give several resources with which the interested reader could study
diffeomorphism groups further. First and foremost is Banyaga’s The Struc-
ture of Classical Diffeomorphism Groups [2], the standard text on the
topic, and a source of a great number of references for related topics such
as the algebraic topology or infinite-dimensional Lie theory of diffeomor-
phism groups. Another expository work, which gives few proofs but a nice
overview of the field, is [15].

We close with a short sketch of the history of the study of perfectness
and simplicity of diffeomorphism groups, both to place the paper in con-
text and to give candidates for further reading. The history begins not
with diffeomorphisms themselves, though, but with homeomorphisms. In
the 1960s and 1970s, the works of Anderson, Cernavskii, Edwards, and
Kirby [1, 4, 12, 23] resulted in the theorem that the group of homeomor-
phisms isotopic to the identity of a manifold M is always simple. As a
result, Smale conjectured that Diff”, (M), the group of C" diffeomorphisms
[18] with compact support and isotopic to the identity is simple. The first
progress on Smale’s conjecture was the work of Epstein, showing that the
commutator subgroup of Diff] (M) is simple. With the question of simplic-
ity reduced to perfectness, Herman [10] showed that Dift] (T"), where T™ is
the n-torus, is perfect using the Nash-Moser-Sergeraert Implicit Function
Theorem. This was followed by the full result from Thurston [19], who used
perfectness of Diff.(T™) to reduce to prove perfectness and thus simplic-
ity of Diff_(M). Thurston’s proof utilizes a deep connection between the
perfectness of the groups and the homology of certain classifying space of
foliations.

Following Thurston, Mather [16, 17] provided another proof of simplicity
of Diff. (M), assuming that 1 < r < oo and r # dim(M) + 1, and Epstein
improved Mather’s methods in the case r = oo [5]. In more recent years,
new proofs of perfectness and interest in commutator bounds have surfaced.
For the latter, the number of commutators needed to express an element of
Diff.(R™), Diff(S™), Diffo(M) for compact, 3-dimensional M are uniformly
bounded by 2, 4, and 10 have been proved by Burago et al. [3], with related
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uniform bounds [20] and non-uniform bounds [21, 22] from Tsuboi. As it
turns out, the uniform commutator width bounds of [3] actually take as an
input our non-uniformly-bounded result of perfectness. In the vein of new
proofs of perfectness, Haller et. al [9, 8] provided a proof improving on [6],
including a stronger result, that the commutators can be chosen to depend
smoothly on the diffeomorphism. This was even further streamlined by
Mann [14], whose proof we have followed.
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