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Abstract

Euler continues his study of algebraic curves with equal arc length,
a subject to which he returned several times. After a brief review, he
introduces an infinite family of curves with the same indefinite length as
a given ellipse. However, this first family is by his own admission poorly
motivated, so he derives directly a different but related family of curves
with the same indefinite length as a given ellipse.

*The author would like to thank Derek Wilairat and the anonymous reviewer for helpful
comments.



Translator’s Note

Euler's work relating to elliptic integrals spanned his career and fills two of the 29
mathematics volumes of the Opera Omnia. As noted in the editor’s forward for
these volumes [7], Euler returned several times to the study of algebraic curves
with equal arc length. He presented work on this general topic in 1775 (E590),
in 1776 (E638, E639, E645), and in 1781 (E780-E783), as well as leaving an
undated manuscript (E817).

The article translated here, E780 [5], proves that for any ellipse there is
an infinite family of curves which share the same indefinite length. Appearing
in 1830, it was among the last of his journal papers to be published by the
St. Petersburg Academy [6]. Note that we follow the corrected (and lightly
reformatted) Opera Omnia printing rather than the original Mémoires printing.

Translation

1. | had proposed some years before two theorems which certainly seemed to me
worthy of all attention, one of which stated that there is absolutely no algebraic
curve to be given whose indefinite length is equal to any logarithm E]; the other
denied that other than the circle circle no algebraic curve may be exhibited
whose indefinite length is equal to that of some circular arc.[] Whether indeed
other curved lines may be given whose rectifications are proper to themselves,
so that no other algebraic curves agree with the same, is a question of greatest
difficulty.

2. | have indeed invented some algebraic curves, whose indefinite lengths
are equal to eIIipticE] and even parabolicE] arcs, but in truth still nothing had
allowed me to investigate such an algebraic curve whose rectification would
agree with that of a hyperbola. Recently, however, | fell into such formulas
which yield innumerable algebraic curves, whose entire lengths may be reduced
to elliptic arcs, for which reason it seems worthwhile to have introduced these
curves, for this argument is entirely new and has not been discussed clearly
enough by anyone.

3. | considered naturally the curve, whose orthogonal coordinates = and y

®See Theorem 3 of E590 [I].

“See Theorem 2 of E590 [I]. However, Euler later disproved this result in E783 [4].
4See E639 [2].

®See E638 [3].



are expressed in these formulas

acos.(n+ 1)  beos.(n—1)p

n+1 n—1 7
asin.(n+1)¢  bsin.(n —1)p
= + )
n+1 n—1

Hence it will be

SZ = —asin.(n + 1)p — bsin.(n — 1),

9y

o acos.(n+ 1)+ beos.(n — 1)p.
¥

Thus the element of the curve will be

V/0x2 + 0y? = dpr/aa + bb + 2abcos. 2p,

this formula obviously involving the rectification of an ellipse. For if the coordi-
nates are set on the ellipse

X = fcos.p and Y = gsin. ¢,

it will be

VOX2 +0Y?2 = dp\/f fsin. 2 + gg cos. ©2,

on account of which the formulas

1 — cos. 2 1 .2
sin. p? = % and cos. p? = w

change into

a@\/ff;rgg L 99 ; If.. 2%,

where if we take g = a+b and f = a — b, our formula itself results, so that the
semiaxes of the ellipses having the same rectification are thus a + b and a — b.

4. Since therefore in the element of the curve \/0x2 + Oy? there is no
number n and thus it is left entirely to our discretion, it is obvious that there
may be exhibited innumerable algebraic curves, whose arcs are thus equal to
the arcs of the given ellipse, each very different from each other, and even the
orders of the algebraic curves will be considered to be very different for various



values taken in place of n. However it does not follow, even though circles may
be a species of ellipse, that like circles there may be other diverse curves of the
same rectification assigned this way. For when a circle arises, if both semiaxes
f and g are set equal, it is necessary that either a or b vanish. Taking however
b =0, it will be

. acos.(n+ 1)p and y— asin.(n + 1)p
n+1 n+1

and thus it will be zz + yy = ﬁ; whatever n from before is accepted, a

circle therefore always arises.

5. Since moreover | had only fallen by chance into these formulas, it will be
entirely worth the effort to inquire into an analysis of this sort, which, having
been proposed for an ellipse, leads by hand, by a direct route, to the formulas
brought above in §3, which | undertake to solve in the following problem.

THE PROBLEM

6. Given an ellipse, whose orthogonal coordinates X and Y are defined by
these formulas

X =2fcos.0 and Y = 2¢sin. 0,

find innumerable other algebraic curves which share a common rectification with
this ellipse.

THE SOLUTION

If x and y are the coordinates of the sought curve, and since it must be that
0z% + 0y? = 0X? + 0Y2, this condition will be fulfilled, if it might be assumed
that

Ox = 0X cos. p + JY sin. ¢,
Oy = 0X sin. ¢ — AY cos. ¢.

Now since these differential formulas must admit integration, let them be inte-
grated as usual, and it will be revealed that

x = Xcos.p+ Ysin. g+ /&p(Xsin.go — Y cos. p),

y = Xsin.¢p — Y cos.p — /Ggp(Xcos.gp—l— Y sin. ).



7. Because already we have X = 2f cos.6 and Y = 2gsin. 0, we take the
angle ¢ = nf, and it will be through the known reductions of angles
X sin. p = fsin.(n+ 1)0 + fsin.(n — 1)6,
X cos. o = fcos.(n+1)0 + fcos.(n—1)0,
Y sin. ¢ = —gcos.(n+1)0 + gcos.(n — 1)0,
Y cos. ¢ = gsin.(n + 1)0 — gsin.(n — 1)6.

From these values it is now deduced that

Xsin.o —Ycos.o = (f —g)sin.(n+ 1)0 + (f + g) sin.(n — 1),
Xcos.o+Ysing=(f —g)cos.(n+1)0 + (f + g) cos.(n — 1)0,

which carried through with ¢ = n0d6 and integrated, if for the sake of brevity
itisput f+g=>band f —g=a, give

_nacos.(n+1)6  nbcos.(n —1)6

/&p(X sin. p — Y cos. ) =

n+1 n—1 s

in.(n+1)§  nbsin.(n — 1)¢
/asﬂ(Xcos.go+Ysin.<p):+”asm (n+1)0 | nbsin.(n —1)6

n+1 n—1

8. If therefore the integrals are substituted for these values, our coordinates
are

na

x =acos.(n+1)0 +bcos.(n —1)0 — o cos.(n 4+ 1)0 — — cos.(n —1)6,
. . na .

y = asin.(n + 1) + bsin.(n — 1)0 — e sin.(n +1)0 — — sin.(n — 1)6.

But with the two members properly joined, these coordinates for the curves
having a common rectification with the ellipse will be expressed as follows

T = i 1 cos.(n+1)6 — — cos.(n —1)0,
y= j_ 1 sin.(n + 1)6 — p—] sin.(n — 1)6,

which do not differ from those expressions cited above, except that here the
letter b may be taken negatively. Where in the known case, in which n = 0, the
same ellipse will result. For putting n = 0, it will be

x = (a+b)cos. and y = (a —b)sin. 6.



9. If n = 2 is taken, without a doubt the simplest curve will result. Moreover
it will be found

z =2 c0s.30 — beos. 0 and y= %sin. 30 — bsin. 6.

In place of 5 we write the letter ¢, and we seek the chord \/zx +yy = z, and
it will be zz = cc + bb — 2bc cos. 20. Consequently,

bb+ cc — zz

.20 =
cos T

and hence[ﬂ
o, Jzz—(b—¢)? _\/(b+c)2—zz

Hence, because sin. 360 = 4 sin. 6 cos. 82 —sin. # and cos. 30 = 4 cos. 62 —3 cos. 6,
if the angle 6 is eliminated, an equation between the same coordinates x and y
will arise, which will however rise to more dimensions |

10. The method by which we investigated these formulas is however much
broader, and can be extended to take other curves in place of an ellipse. For if
the coordinates for the curve have been given

X = 2f cos. af) + 2f' cos. 8 + etc.,

Y = 2¢gsin. af + 2¢’ sin. 30 + etc.,
then for the rest of the curves have a common rectification with the proposed
ones, by assuming again

f—-g=a, f+g=0b and f'—¢g=d, f+4 =V et
it will become

aa

x = cos.(n + a)f — cos.(n — )l
n+ao n—au
/ /
+ nﬁ—fﬁ cos.(n + B)8 — nﬁ_ 5 cos.(n — )6 + etc.,
y = n+asm.(n+a)9— n_asm.(n—a)ﬂ
Ba/ /
+ 3 sin.(n + ()8 — sin.(n — )6 + etc.
Tl/ —_—

fThe editor, Krazer, silently corrects two misapplications of the double-angle identities for
cos 260, writing 4bc in the denominators in place of the 2bc found in the Mémoires.

€Krazer follows the Mémoires in writing these triple angle identities, but in modern notation
this would more unambiguously be written sin. 30 = 4sin. 8(cos. §)? — sin. § and cos. 30 =
4(cos. 0)® — 3 cos. 0



Where again because of the indefinite number n innumerable curves come
about.
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De Infinitis Curvis Algebraicis Quarum Longitudo Indefinita
Arcui Elliptico Aequatur

Auctore L. Eulero

Mémoires de I'’Académie Impériale des Sciences de St. Pétersbourg 11, 1830,
pp.95-99



1. Proposueram ante aliquot annos duo theoremata, quae mihi quidem omni
attentione digna videbantur quorum altero statui nullam prorsus dari curvam al-
gebraicam, cuius longitudo indefinita cuipiam logarithmo aequatur; altero vero
negavi praeter circulum ullam exhiberi posse curvam algebraicam, cuius longi-
tudo indefinita arcui cuipiam circulari aequatur. Utrum vero aliae dentur lineae
curvae, quarum rectificatio ita ipsis sit propria, ut eadem nullis aliis curvis alge-
braicis conveniat, quaestio est maxime ardua.

2. Inveni quidem nonnullas curvas algebraicas, quarum longitudo indefinita
aequatur arcui elliptico atque adeo etiam parabolico, at vero nullam adhuc inves-
tigare mihi licuit eiusmodi curvam algebraicam, cuius rectificatio cum hyperbola
conveniret. Nuper autem incidi in eiusmodi formulas, quae infinitas praebent
curvas algebraicas, quarum omnium longitudo indefinita ad arcum ellipticum
reduci potest, quas idcirco curvas hic in medium attulisse operae pretium vide-
tur, siquidem hoc argumentum plane est novum neque a quoquam satis dilucide
pertractatum.

3. Consideravi scilicet curvam, cuius coordinatae orthogonales x et y his
formulis exprimantur

acos.(n+ 1)  beos.(n—1)p

)

n+1 n—1
_asin.(n+1)p  bsin.(n— 1)
v= n+1 n—1
Hinc ergo erit
0
£ = —asin.(n + 1)¢ — bsin.(n — 1),
9y
90 = acos.(n+ 1) + bcos.(n — 1)p.
¥

Hinc ergo erit elementum curvae

V/0x2 + 0y? = dpr/aa + bb + 2abcos. 2,

quae formula manifesto rectificationem ellipsis involvit. Nam si coordinatae
statuantur in ellipsi

X = fcos.p et Y = gsin. ¢,

erit

VOX2 4+ 0Y2 = 0o/ f f sin. ¢ + gg cos. p2,



quae formula ob

1-— .2 1 .2
sin. @2 = 72)8 L4 et COs. @2 = 74— Cgs 14

abit in hanc

3¢\/ff;rgg L 99 ; ff c0s. 20,

ubi si sumamus ¢ = a+ b et f = a — b, ipsa nostra formula resultat, ita ut
ellipseos eandem rectificationem habentis sint semiaxes a + b et a — b.

4. Quoniam igitur in elemento curvae \/9x% + dy? numerus n non inest
ideoque arbitrio nostro prorsus relinquitur, manifestum est innumerabiles ex-
hiberi posse curvas algebraicas, quarum arcus adeo datae ellipseos arcubus ae-
quentur, quae omnes curvae inter se maxime erunt diversae atque pro variis
valoribus loco n assumtis ad ordines curvarum algebraicarum plurimum diversos
erunt referendae. Neque tamen hinc sequitur, etiamsi circulus sit species ellip-
sis, pro circulo quoque alias diversas curvas eiusdem rectificationis hoc modo
assignari posse. Cum enim circulus prodeat, si ambo semiaxes f et g statuantur
aequales, necesse est, ut vel a vel b evanescat. Sumto autem b = 0 erit

~acos.(n+1)p ot _asin.(n+1)p
B n+1 V= n+1
sicque erit xr + yy = (niial)g; quicquid pro n accipiatur, semper igitur circulus

oritur.

5. Cum autem casu in istas formulas tantum incidissem, utique operae
pretium erit in eiusmodi Analysin inquirere, quae proposita ellipsi via directa
ad formulas supra § 3 allatas manuducat, quem in finem sequens problema
resolvendum suscipio.

PROBLEMA.

6. Proposita ellipsi, cuius coordinatae orthogonales X et Y his formulis
definiantur

X =2fcos.0 et Y = 2¢sin. 0,

invenire innumerabiles alias curvas algebraicas, quae cum ista ellipsi communem
rectificationem sortiantur.



SOLUTIO.

Sint = et y coordinatae curvarum quaesitarum, et cum esse oporteat dx2 +
O0y? = 0X? + 0Y?, haec conditio implebitur, si sumatur

Oxr = 0X cos. ¢ + Y sin. p,

Oy = 0X sin. ¢ — AY cos. .
lam quia hae formulae differentiales integrationem admittere debent, integren-
tur, qua fieri licet, more solito ac reperietur

x = X cos.p+ Ysin. o+ /6(,0(Xsin.<p — Y cos. p),

y = Xsin.¢p — Y cos.p — /8¢(Xcos.g0+ Y sin. ).

7. Cum iam sit X = 2f cos.f et Y = 2¢sin. #, sumamus angulum ¢ = nf
eritque per notas angulorum reductiones

Xsin. p = fsin.(n+ 1)0 + fsin.(n — 1)6,
X cos.p = fcos.(n+1)0 + fcos.(n —1)0,
Y sin. p = —gcos.(n+ 1)0 + gcos.(n — 1)0,
Y cos. p = gsin.(n + 1)0 — gsin.(n — 1)6.
Ex his iam valoribus colligitur
Xsin.go —Ycos.o = (f —g)sin.(n+ 1)0 + (f + g) sin.(n — 1),
X cos. o+ Ysin.o = (f —g)cos.(n+1)0 + (f + g) cos.(n — 1)6,

quae aequationes ductae in dp = ndf et integratae, si brevitatis gratia ponatur
f+g=bet f—g=a, dabunt

~nacos.(n+1)6  nbcos.(n —1)¢

)

/agp(X sin. p — Y cos. ) =

n+1 n—1

in.(n+1)8  nbsin.(n — 1)¢
/8¢(Xcos.go+ysin'(p):+na51n (n+1) | hsin (n—1) .

n+1 n—1

8. Si igitur pro integralibus hi valores substituantur, nostrae coordinatae
erunt

na nb
. 1)6 — An—1
n+1cos (n+1)0 n—lCOS (n )6,

b
nTl sin.(n + 1)6 — nn— 1 sin.(n — 1)6.

x =acos.(n+1)8 +bcos.(n—1)0 —

y =asin.(n 4+ 1)0 + bsin.(n — 1)0 —



At binis membris rite coniunctis istae coordinatae pro curvis quaesitis cum ellipsi
communem rectificationem habentibus ita erunt expressae

T= i ] cos.(n 4+ 1)0 — - ﬁ . cos.(n — 1)0,

b
sin.(n +1)0 — ] sin.(n — 1)6,

y:n+1 n —

quae expressiones a supra allatis aliter non differunt, nisi quod hic littera b neg-
ative sit sumta. Ubi notandum casu, quo n = 0, ipsam ellipsin esse prodituram.
Posito enim n = 0 fiet

x = (a+b)cos. et y = (a —b)sin. 6.

9. Si sumatur n = 2, prodibit sinpe dubio curva post ellipsin simplicissima.
Reperietur autem

T = %Cos.?ﬁ—bcosﬂ et Yy = % in. 36 — bsin. 0.

a

Loco § scribamus litteram c et quaeramus chordam /zx +yy = z eritque
zz = cc + bb — 2bc cos. 20, consequenter

bb+ cc — zz

.20 =
cos e

hincque

_ —_ )2 2
sin. f = \/zzizcc) et cos. 0 = \/W

Hinc, cum sit sin. 30 = 4 sin. 6 cos. 82 — sin. 6 et cos. 30 = 4 cos. #% — 3 cos. 0,
si angulus @ eliminetur, eruetur aequatio inter ipsas coordinatas = et y, quae
autem ad plures dimensiones assurget.

10. Methodus, qua has formulas indagavimus, etiam multo latius patet
atque ad alias curvas loco ellipsis assumtas extendi poterit. Si enim coordinatae
pro curva data fuerint

X = 2f cos.af + 2f' cos. 30 + etc.,
Y = 2gsin. af + 2¢’ sin. 30 + etc.,



pro reliquis curvis cum proposita communem rectificationem habentibus po-
nendo iterum

f—g=a, f+g=b e fl—¢g=d, f+4=V et

fiet
=24 cos.(n + «)f — cos.(n — )l
n+ao n—o
/ /
+ nﬁ—zﬁ cos.(n + B)8 — nﬁ_ 5 cos.(n — B)6 + etc.,
y = n+asm.(n+a)9— n_asm.(n—a)ﬂ
Ba/ /
+ sin.(n + )0 — sin.(n — )0 + etc.
L sinn+ 6) — 2 sin(n - )

Ubi iterum ob n numerum indefinitum innumerabiles curvae prodeunt.



